Unterlage 18.1
Wassertechnische Untersuchungen

Anlage 1 Bemessung des RRHB 271-2 aus den 1990er Jahren

Rückhaltebecken RRHB 271-2 bei Bau-km 271 + 400 (BW-Verzeichnis Nr. 49)

1. Bemessungsregen

Niederschlagshöhe $h_{N60} = 30 \text{ mm}$ Dauer T = 60 min

Häufigkeit n = 0,2 (5jährige Regenhäufigkeit)

Regenspende $r_{15(n=1)} = 134 \text{ l/(s x ha)}$ $r_{30(n=0,2)} = 147 \text{ l/(s x ha)}$

2. Abflußbeiwerte

Befestigte Fahrbahn $\psi_i = 0,9$ Böschungen, Mulden und Mittelstreifen $\psi_i = 0,4$ sonstige Einzugsgebiete $\psi_i = 0,1$ größere Waldfächen $\psi_i = 0,05$

3. Einzugsbereiche

	Planung BAB A9			
Befestige Flächen	A		4,87	ha
Böschungen, Mulden	A	=	3,70	ha
sonstige Einzugsbereiche	A	=	7,50	ha
Waldflächen	Ai	=	-,	ha

4. Nachweis des Absetzbeckens

Bemessungszufluß

 $Q_b = r_{15(n=1)} \times (\Sigma A_i \times \psi_i) = 134 \text{ l/(s x ha)} \times 6,61 \text{ ha} = 886 \text{ l/s}$

erforderliche Wasserfläche (nach RAS-EW Ziff. 1.4.7)

erf. $A = Q_b / q_A$ mit q_A = 18 m/h

erf. A = $(886 \times 3,6) / 18$ = $177,2 \text{ m}^2$

Gewählte Abmessungen: Länge: L = 24,0 m

Breite: B = 8.0 mWassertiefe: t = 1.35 mnutzbare Beckentiefe: T = 2.05 m

Nachweise

- Wasseroberfläche

$$0 = L \times B = 192 \text{ m}^2 > \text{erf } 0 = 177,2 \text{ m}^2$$

Ölauffangraum > 30 m³

$$V = 0 \times t_2 \text{ mit } t_2 = 0.30 \text{ m}$$

 $V = 57.6 \text{ m}^3 > 30 \text{ m}^3$

5. Ermittlung des erforderlichen Rückhaltevolumens

Zufluß:

$$Q_{zu} = r_{30 \text{ (n=0,2)}} \times \Sigma A_i \times \psi_i \text{ (Planung)}$$

= 147 x 6,61 = 972 l/s

Das erforderliche Rückhaltevolumen ergibt sich nach einem Blockregen mit 30 Minuten Dauer

erf V =
$$Q_{zu} \times 30 \times 60/1000$$

= 972 x 30 x 60/1000

$$= 1.749,6 \text{ m}^3$$

gewählt = 1.800 m³

6. Ablauf aus dem Rückhaltebecken

Der Beckenablauf wird durch eine Öffnung Ø 15 cm am Auslaufwerk gedrosselt.

$$Q_{ab} = \mu \times F \times \sqrt{(2 \times g \times h)}$$

 μ = 0,64 (= Ablußbeiwert für scharfkantige Öffnung)

F = Durchflußöffnung (m²)

 $g = 9.81 \text{ m/s}^2$

n = Stauhöhe (m)

Stauhöhe (m)	Q _{ab} (I/s
1,1	52,5
0,9	47,5
0,7	41,9
0,5	35,4
0,3	27,4
0.1	15,8

entsprechend der maximalen Stauhöhe von 1,1 m beträgt der Wasserzulauf zwischen 0 l/s und 52,5 l/s.